Analytik & Automation: Automatisches Datenmanagement bei Banken und Versicherern
Das Verwalten immenser Datenmengen kann längst nicht mehr manuell geschehen. Moderne Tools können mit Analytik und Automation das Datenmanagement vereinfachen, verbessern und beschleunigen.
von Michael Krett, Geschäftsführer dynaMigs.net
Dass die Daten einer Organisation äußerst wertvoll sind, ist eine Binsenweisheit. Und so verwundert es nicht, dass so manche Organisation seit ihrer Gründung noch niemals je ein einziges Bit ihres Datenbestandes gelöscht hat. Ganz im Gegenteil: Notwendige Backup-Strategien nach dem 3-2-1-Prinzip bedeuten sogar, dass dieselben Daten aus Sicherheitsgründen gleich mehrfach abgespeichert werden. Aus diesem und zahlreichen weiteren Gründen vergrößert sich die zu speichernde Datenmenge im Durchschnitt um rund 25 Prozent pro Jahr. So verdoppeln sich die Daten etwa alle drei Jahre, während sich der Lebenszyklus von Storage verkürzt. Die Folge dieses kaum kontrollierten Datenwachstums sind vielerorts ausufernde Speicherlandschaften. Dies stellt viele Organisationen jedoch vor große Probleme. Sie müssen scheinbar ständig neuen Speicher anschaffen. Um den Datenwildwuchs zumindest einzudämmen, setzen viele Organisationen seit einiger Zeit auf aktives Datenmanagement.Datenmanagement: eine absolute Notwendigkeit
Weit gefasst ist Datenmanagement eigentlich nur das planvolle Verwalten von Daten. Dies war und ist in den meisten Fällen Sache der Speicherteams und erfolgte bisher weitestgehend manuell. Mit zunehmender Größe und Komplexität der Speicherlandschaft kommen die zuständigen Teams jedoch an ihre Grenzen, nicht nur in Sachen Arbeitsumfang, sondern auch hinsichtlich der Komplexität. Eines der grundlegenden Probleme ist, dass die IT- und Speicherlandschaft der meisten Organisationen über Jahre, wenn nicht gar Jahrzehnte, organisch gewachsen ist. Oft weiß die IT nicht einmal mehr ganz genau, welche Daten überhaupt vorhanden sind und wo diese genau liegen.
Wer jedoch den Überblick über seinen Datenbestand verloren hat, kann seine Daten nicht sinnvoll nutzen, geschweige denn einen Wert aus ihnen ziehen. Dies führt das Speichern der Daten an sich ad absurdum.”
Wieso etwas aufheben, das man aller Wahrscheinlichkeit nach nicht mehr verwenden kann? Aktives, planvolles und nachvollziehbares Datenmanagement ist daher eine absolute Notwendigkeit für alle Organisationen, insbesondere die, die eine große Menge an Daten verwalten.
Wie toolbasiertes Datenmanagement funktioniert
Der erste Schritt, das Datenmanagement zu verbessern, besteht in der Analyse des gesamten Datenpools. Dies geschieht idealerweise über spezielle Tools, die alle vorhandenen Daten erkennen, auflisten und anhand ihrer Metadaten analysieren können. Die Analyse lässt dann Schlussfolgerungen zu, wie die Datenverwaltung optimiert werden kann. Solche Tools sind idealerweise Teil einer Datenmanagement-Software, die darüber hinaus zahlreiche weitere Funktionen mitbringt, um auch die manuelle Administration von Informationen auf einen modernen Stand zu heben.
Vorteile des Tool-gesteuerten Datenmanagements
Nur wer seine Daten im Detail kennt, kann verschiedene Bestände auf den jeweils optimalen Speichern ablegen. Produktive Daten kommen beispielsweise auf schnellen Flashspeicher. Alte, ungenutzte Daten kommen ins Archiv oder werden aktiv gelöscht. Das spart Storage-Kosten und sorgt für hohe Performance der Produktionsdaten. Datenmanagement schafft darüber hinaus Informationssicherheit für die Unternehmen. Wenn Mitarbeiter ausscheiden, geht das Wissen über die von ihnen verwalteten Speicher und Daten nicht verloren.
Auch profitieren Unternehmen von einer verbesserten Planungssicherheit. Mit strategischem Datenmanagement können sie Tendenzen erkennen und damit den Termin des nächsten Hardware-Refreshs besser planen oder die Administration dynamisch anpassen. So wird man nicht mehr überrascht, wenn der Speicher schon wieder voll ist, kann den Zukauf neuen Speichers eventuell nach hinten verschieben oder gar ganz vermeiden. Die Analyse der vorhandenen Daten und die sich daraus ergebenden Vorschläge, was mit den Daten zu tun ist, sind also der erste wichtige Schritt für planvolles Datenmanagement. Grafische Darstellungen und das Aufzeigen von Kosteneinsparungen vereinfachen es, diese Analysen für die eigene Organisation zu interpretieren.
Moderne Tools in einer Plattform bieten darüber hinaus die Möglichkeit der Automatisierung. Sie analysieren die Datenbestände nicht nur in Intervallen, sondern kontinuierlich. Anschließend können sie Daten anhand von festgelegten Regeln verschieben oder anderweitig verarbeiten. Ein klassisches Beispiel für automatisches Datenmanagement ist es, nicht verwendete Dateien nach Ablauf einer gewissen Zeit automatisch auf ein tieferes Datentier zu verschieben. Große Video- oder PowerPoint-Dateien wandern somit beispielsweise ins günstige Archiv und machen schnelleren Speicherplatz auf dem Hauptspeicher oder gar auf dem Flashspeicher frei. So müssen Administratoren sie nicht regelmäßig aufwändig manuell entsorgen. Dies geschieht mit modernen Technologien vollkommen automatisch, permanent und von Nutzern unbemerkt im Hintergrund.
So automatisiert kann Datenmanagement auch der Migration, einer der unbeliebtesten Pflichtaufgaben vieler IT-Organisationen, den Schrecken nehmen oder sie bis zu einem gewissen Grad vermeiden oder aufschieben.”
Automatisches Datenmanagement vereinfacht Migrationen
Der Umzug von Daten in regelmäßigen Intervallen, etwa vor einem anstehenden Hardware-Refresh, ist meist komplex und verläuft nicht immer problemlos. Je größer die Datenmenge, desto länger dauert die Migration und die damit verbundene Downtime der Systeme. Mit modernen Tools für Datenmanagement lassen sich jedoch einfache, weniger komplexe Migrationen lösen oder besser planen. Wer durch die Analyse genau weiß, welche Daten wo liegen, kann die Migrationen gründlicher vorbereiten, die geeigneten Methoden auswählen und proaktiv Probleme angehen, anstatt nur im weiteren Verlauf auf diese zu reagieren.
Cloud statt Datenmanagement?
Auch beim Schritt in die Cloud oder gar bei einer Cloud-First-Strategie hilft Datenmanagement. Dabei macht die Cloud modernes Datenmanagement nicht überflüssig. Zwar ist die Cloud nahezu unendlich skalierbar und man muss theoretisch nicht regelmäßig den Speicher erneuern oder erweitern, doch selbst die Cloud bringt ihre Kosten mit sich. Insbesondere, wenn man für Speicherplatz für Daten in der Cloud bezahlt, die man eigentlich gar nicht mehr braucht. Unternehmen sollten also erst einmal genau wissen, was überhaupt in die Cloud soll oder darf, um den nächsten Schritt hin zur Cloud-Nutzung gehen zu können. Datenmanagement hilft dabei, zentrale Entscheidungen bei der Auswahl einer Cloudstrategie richtig zu treffen: Welcher Cloud-Anbieter ist der passende? Ist eine Multi-Cloud möglich oder sinnvoll? Welche vertraulichen Daten dürfen nicht in der Cloud landen? Welche Cloud bietet die besten Funktionen? So können die Verantwortlichen die geeignete Cloud-Strategie auswählen, Kosten einsparen oder gar einen Cloud-Lock-In vermeiden.
Fazit: Datenmanagement als Fundament einer langfristigen Datenstrategie
Über dynamigs.net dynaMigs (Webseite) ist ein führender IT-Dienstleister, der die volle Bandbreite von Datenmigration, Datenmanagement bis hin zu Prozessautomation für große und mittlere Unternehmen abdeckt. Der weltweit tätige Dienstleister aus Gräfelfing bei München hilft Unternehmen so, Speicherkosten zu senken und ihre Daten von jeder Speichertechnologie auf beliebige Zielsysteme zu migrieren.
Ohne strategisches, automatisches Datenmanagement und entsprechende Tools lassen sich Daten heute manuell kaum mehr sinnvoll verwalten. Planlos neue Speicher ergänzen oder die Cloud als Notbehelf zu nutzen, sind eine Medizin, die nur Symptome behandelt, aber nicht die Ursachen bekämpft. Die Probleme sind vertagt, nicht gelöst und wachsen. Datenmanagement hingegen ist das Fundament für eine langfristige Datenstrategie, um Kosten zu optimieren, Komplexität zu mindern und Migrationen zu vermeiden, vorzubereiten oder einfacher umzusetzen.
Organisationen sollten besser früher als später damit anfangen, ihre Daten plan- und sinnvoll zu verwalten. Moderne Plattformen für Datenmanagement können hier helfen.”
Sie kombinieren die Datenanalyse, Automation, Migrationen, Replikation oder das Teilen von Daten mit Dritten und vereinfachen so die Datenverwaltung selbst sehr großer Datenmengen auf gleich mehreren Ebenen.Michael Krett, dynaMigs
Sie finden diesen Artikel im Internet auf der Website:
https://itfm.link/121872
Schreiben Sie einen Kommentar